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Abstract

The elastic stress field due to an edge dislocation near the tip of a wedge-shaped bi-material interface is derived using
the conformal mapping method. The stress intensity factors of the wedge tip induced by the dislocation, the interaction
strain energy, and the imaging force acting on the dislocation are formulated and calculated. The influences of the
wedge angle and the different bi-material combinations on the imaging force are discussed. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In engineering materials and structures, wedge-shaped interfaces are very often encountered, such as in
polycrystalline materials, composite materials with irregular inclusions, and square silicon die encapsulated
by epoxy matrix in electronic packages, etc. As a wedge-shaped interface introduces stress singularity at its
corner where a micro-crack could be easily initiated, a number of researchers have been studying on such
problems for the last two decades. To give some examples, Bogy and Wang (1971) investigated the problem
of a composite body consisting of two dissimilar isotropic, homogenecous wedges. In their work, an eigen
equation for determining the order of singularity at the corner of wedge shaped interface was given. The
same problem was restudied by Chen and Nisitani (1993), in which an explicit closed form expression was
established for the singular stress field at the corner. Reedy and Guess (1997) analyzed the critical value of
the stress singularity intensity at a wedge corner for a micro crack to be initiated. Reedy (2000) further
studied the connection between the failure criteria based on the critical values of singularity intensity factor
at the wedge corner and the traditional stress intensity factor. Recently Pahn and Earmme (2000) inves-
tigated the problem for a crack initiated from the corner of a rectangular inclusion.
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Fig. 1. An edge dislocation near a wedge shape inhomogeneity.

The objective of the present paper is to obtain the stress solution for a single edge dislocation near
a wedge-shaped bi-material interface as shown in Fig. 1. Since a crack in solid can be simulated by a
distribution of dislocations along the crack face (Weertman, 1996), the current solution can be used as the
Green’s function to study interaction problems for a crack near a wedge corner. A lot of research work on
dislocation—inclusion (interface) interaction can be found in open literature, it is worth to have a brief
review here. The early contributions up to 1960s to this area were summarized by Dundurs (1969a), where
he summarized the single dislocation in an infinite solid, a dislocation in a bi-material space (dislocation in a
half spaces is the special case by taking one of the material as zero modulus), a dislocation interacting with
a circular inclusion. More recently, Lo (1978) studied the interaction between a dislocation with a crack
when he conducted research on crack branching. Warren (1983) considered the interaction between a single
dislocation with an elliptical inclusion via conformal mapping technique. Dundurs and Markenscoff (1989)
gave the solution for a dislocation interacting with an anti-crack (rigid line inclusion). Xiao and Chen
(2001) tackled the interaction between a dislocation and an inclusion coated with different type of materials.
It is not difficult to see that all the above mentioned configurations have significant physical applications in
modeling of defects in solid materials.

In the following sections, we shall present the solution for a single dislocation in bi-material space
as shown in Fig. 1. It is apparent that the geometric configuration in Fig. 1 can be reduced to joint-
two-half space, anti-crack, and a crack by taking special value of ¢, and special modulus for one of the
materials, therefore the aforementioned existing results can be used as checking for our derivations.
During the solution procedure the conformal mapping technique was employed, with which the wedge
configuration as shown in Fig. 1 is mapped onto two-joint-half spaces. Due to the complexity of the
formulation, a symbolic derivation program, MATHEMATICA (Wolfram, 1996), was used to minimize
possible mistakes. Based upon the Green’s function obtained, we found the force acting on the disloca-
tion which drives the dislocation toward or away from the wedge corner. Also, since the stress at the
corner of the wedge is singular, we calculated the stress intensity factor due to the presence of the dislo-
cation.
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2. Formulation and complex potentials of the problem

The physical problem to be investigated is shown in Fig. 1. Both materials are assumed to be isotropic
and linear elastic, and extend infinitely in the x-axis direction. The wedge angle is denoted as ¢,. An edge
dislocation with Burgers vector b = b, + ib, is located at z4(rq, 04) in the Material 1. The shear modulus and
Poisson’s ratio of the bi-material combinations are denoted by y;, v; and u,, v, respectively.

The continuum conditions along the interface 0 = +(n — ¢,/2) are

(uy — i) — (5 — ) = 0, (2.1a)

(‘7:0 - io(l)()) - (‘730 - io'(z)()) =0, (2.1b)

where the superscripts “1’” and “2”” denote the variables for the Material 1 and 2, respectively. We assume
plane strain state, so that the displacement and stress components can be written in terms of two complex
potentials ¢(z) and y(z) (Muskhelishvili, 1975).

2(u+1v) = k() — 29/ G) — V), (2.22)
G — oy = /() + 90 — 20" (2) — V' (2), (2.2b)
0y +ioy = ¢/(2) + 9 +20(2) + V' (2), (2.20)

where k = 3 — 4v. The over bar denotes a complex conjugate, and the prime denotes differentiation with
respect to the argument z. Our task now becomes to find the complex functions ¢,(z), ¢,(z), ¥,(z) and
V,(z), from which the displacement and stress components in the two regions must satisfy the continuity
conditions (2.1a,b).

By choosing a conformal mapping function as

z=w(g) =¢", (2.3)

with ¢ = n/(2n — ¢,) and ¢ = ¢ + iy, this function maps the interface 0 = +(n — ¢,/2) in the z-plane of
Fig. 1 into the imaginary axis in the ¢-plane, as shown in Fig. 2. Let the four complex potentials have the
following forms in the ¢-plane

@1 =7[In(c — cq) + M n(—¢ = Sg)] + @1, (2.4a)
¥y =7ln(c —¢q) + AIn(—c —Sy)] + Y10 (2.4b)
@y =7(1+ A)In(c — ) + ¢a, (2.4¢)
Yy = (1 + 1) In(c — ¢4) + Yoo, (2.4d)
where
Y= ﬁ (by —iby), (2.5a)
A=(a+p)/(1-p), (2.5b)
= (a—p)/(1+h), (2.5¢)

with o and f as the Dundurs’ bi-material parameters (Dundurs, 1969a). Following Muskhelishvili (1975),
the continuum conditions (2.1a) and (2.1b) can be rewritten in terms of the complex potentials as
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Fig. 2. An edge dislocation near a straight line interface.
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e + e + e - e + e + Se = 0,
[@1( ) wi(c) @y (ce) + i ( )] [@2(5 ) Wz @5(se) + (s )]
where ¢, lies on the interface (i.e. ¢, = i), and
r="1.
Hy
Substituting Egs. (2.4a)—(2.4d), into Egs. (2.6a) and (2.6b) and using the relationship
(14 pB)—(1+a) K_F(l—oc)—(l—ﬁ)
 eepr =
we obtain
ol 1Al —— w()
Yiolse) = H(plo(vc) (1 + 4) ¢0(cc) Wiz, @ (Se)s

4+ —— 1+ 11 - w(g,)
Wao(Se) = T%o(gc) 1+ m@zo(sc) w(c) ?5(cc)-
Since ¢, = —¢, holds on the imaginary axis of the ¢-plane, we have
1 ) 1—AIT _ o\ w(=g)
¥10(¢) —H(Pm( <) (1 + A) P20(—¢) W (<) Ak
o+ n 1+1 _ ) w(—=¢) o
Ya(s) = i ?10( g)+H(1—|—A) P20(—5) W (<) @5()

(2.6a)

(2.6b)

(2.7)

(2.8)

(2.9a)

(2.9b)

(2.10a)

(2.10b)
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Substituting Egs. (2.4a), (2.4b) and (2.9a) into Eq. (2.2a), we obtain the displacement in the Material 1
as

2 (g +ivy) = wy[In(g — ¢4) + MIn(¢ — &y)] — y[In(¢ — &) + AIn(=S — ¢4)]

wig) —w(=5) | 1 i 1 1 — Al )
B w(c) y[§_§d+_:—sd] _ﬁ(pm(_b)—’_m(ﬂzo(_g)
_M%(g) 4 K1010(0), (2.11)
w(c)

According to the physical nature of a dislocation, only the singularity in the logarithmic term is allowed
when ¢ — ¢4. Thus, in order to cancel the singularity in the other term, ¢,, and ¢,, are chosen as

) —w(—z) I
P10(c) = w(ea) — w(=G) - /; ) (2.12a)
W (cq) ¢+¢&q
¥y = 0. (2.12b)
Since

W) =" =z w)= (-9 =Mz =z

S IRV (2.13)
W(fp) — e bz . (g) _ g(g)l/q 1 _ 521_(1'

Eq. (2.12a) is rewritten as

(za — e700zg)Z} 'qITy

P1o(2) = (2.14)
20 + 2§
Substitution of the above equations into Egs. (2.10a) and (2.10b) arrives at
P Gl Z)z gy iy ehziglly | (ehzy — za)zl 2Py (2.15a)
107 21 —z% 24—z} 24 + 724 (z4 +Z§)2 ’ '
(eifzg — z4)z8 'q(1 + M)y ePozig(1 + A)y
Yy = < - —. (2.15b)
24—z} z9 —zy4
Finally, the complex potentials for the current problem are obtained as
— e~z V21 g [T7
01(2) = pIn( — ) + MyIn(—2 — 2) + F4=C ded 7 (2.16a)
z9 424
9>(2) = 9(1 + A) In(zf — ), (2.16b)
B B (eid’ozd _ Zd)zg_lqy eiﬁbozqq'y ei‘b()zqqﬂy
lrbl(z):Vln(zqu(qi)+/1yln(7zqug)+ Z"—Z‘é 72‘/—23 - Z"—l—Zt[l
i 2,91 =
(g — 22 24117, (2.16¢)

P
(2 +23)

o, _ = \,0 i \
Uo(2) = 7(1 + M) In(z — 2) 4+ 7 = %)z (L4 MMy eMztq(l+ A)y (2.16d)

21 —z% 21 —z%
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It is noticed that the results given in Egs. (2.16a)—(2.16d) can be reduced to those of an edge dislocation near
a straight interface (Dundurs, 1969b) by setting ¢ = 1 (¢, = m). The present results can also be reduced to
those of an edge dislocation near a wedge crack (Zhang and Tong, 1995) by setting Material 2 as zero
modulus.

3. Displacement and stress fields

With the aids of Egs. (2.2a)—(2.2c) and (2.4a)—(2.4d) the displacements and stress fields in Fig. 1 due to
the edge dislocation can be calculated. For example, the stress field in the matrix phase can be calculated by
using Egs. (2.16a) and (2.16c), given by

H
R o S 1
O (1 + K) (b + By by), (3.1a)
_ H
Oy = 21+ x1) (Pyyxby + hypyby), (3.1b)
_ Jad}
O = (1 +xy) (Mayxbs + hayyby), (3.1¢)

where the expressions of A, fuxy, Aypes Ry, e, By are listed in the Appendix A.

It is worth to point out that the tedious expressions in Egs. (3.1a)—(3.1c) can be checked by some special
cases (Dundurs and Markenscoff, 1989) for the Green’s function formulation of anticracks. This is made
by letting ¢, =0, 0 =04 =0, and I' = pt,/p; — 0. In this case, a =1, f = (i; — 1)/(x; + 1), from Egs.
(3.1a)—(3.1c), we obtain the stress components on the real axis due to an edge dislocation located at the real
axis. For example, the normal stress component on the real axis due to a climb edge dislocation located at
the real axis in this case is

- by 2 (e — 1)? a4
ol 0) = 3B+ 17 = (- 17 2, (32)

which is the same as the result given by Dundurs and Markenscoff (1989) for the case of a semi-infinite
anticrack.

From Egs. (3.1a)—(3.1c¢), the stresses are found to be singular at the corner of the wedge. If we define the
stress intensity factors as

K, +iKy = nng(z)“q(ayy +iay,), (3.3)

z approaches the origin along the positive real axis. Substituting Eq. (2.2¢) into Eq. (3.3) with Egs. (2.16a)
and (2.16c), we have

Zd(l — H) —l—zd(eid’OH — 1) (eid’O — 1)”

KI+1K11: [ Z(lj+q - 24(11

3.4
ZH—q Zi]j Z‘é ( )

(6% — 1) A—14 (e % — g1 IT—1
+qud( ), ( L @
d

If the dislocation is located at the x-axis, Eq. (3.4) is simplified as

K, +iKy :g—Z[H+A — 2= 2¢*11(1 — cos y)]. (3.5)
d
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In the case of a wedge crack (i.e. Il = A = —1), Eq. (3.5) is further reduced to

K+ 1Ky = ‘ZI_; [247(1 — cos y)]. (3.6)
d
The above equation coincides with the result derived by Zhang and Tong (1995) for an edge dislocation

near a wedge crack.

4. The strain energy and force on the dislocation

The strain energy of the edge dislocation per unit length is evaluated as the work required to move the
dislocation in the material. With reference to Fig. 1, we have

R
W =Re %(bx + iby)/ [04(x, Fa sin 0q) + 16y, (x, rgsin 0q)] dx », 4.1

4 €08 Og+ro

where R is the distance corresponding to the material size and r, is the core radius of the dislocation. We
may take R — oo and ry — O for all the convergent terms in the integrals.
The integrals in Eq. (4.1) can be written in terms of the complex potentials (Muskhelishvili, 1975) as

f [y (x, ra sin ) + o, (x, ra sin 0a)] dx = ~ig) (2) + 27 (2) + ¥ ()] [, (4.2)

4 cos Oq+rg

where z,, is obtained by letting z,, = x + 4 cos 84, with x — +oo. Substituting Eq. (2.14) into the above
equation, and discarding the divergent terms associated with the self-energy, we finally arrive at

_ H 2 2 2 g2
=m0 1 1) [(by + by)er + (b — by)ea + 2b.bycs), (4.3)
where
a1 =[2-qQ2+ A+ M)]Inrg — (A+ ) In(2cos g4) + ¢*IT sec? ¢, sin® (% + Gd) , (4.4a)
¢y =q{(1 + H)(cos ¢, — 1) 4+ M secql4[cos(q — 2)04 — cos(ql4q + ¢¢)]}, (4.4b)
¢y = —q{(1 4+ H) sin ¢, + I sec q04[sin(q — 2)04 — sin(g04 + ¢o)]}, (4.4c)

The image force on the edge dislocation is defined as a negative gradient of the strain energy with respect
to the position of the dislocation. The radial and tangential components of the image force per unit length
are then given by

ow 1 ow
F=—— Fy=———. 4.
! ai’d, 0 rq 60d ( 5)

Substituting Eq. (4.3) into Egs. (4.4a)—(4.4¢c) yields

by +67) 2 — g2+ A+10)

E = - )
27'C(K1 —+ 1) rq

1 (b7 + b)dy + (b — b})dy + 2b.byds
27T(K1 + 1) rq

Fy = —



8226 Z.M. Xiao et al. | International Journal of Solids and Structures 38 (2001) 8219-8233

where

dy = q{(A + IT) tan g04 + qIT sec® g0 sin(ag + 204) + ¢* I sec® g04[1 — cos(p, + 204)] tan g0},

(4.8a)
dy = qIl sec” q04[q sin ¢, + (g — 1) sin 20,4 + sin 2(q — 1)04], (4.8b)
dy = qI sec® q04]q cos ¢ — q cos 204 + 2 cos g0y cos(2 — q)04]. (4.8¢)

5. Numerical examples and discussions

So far we have obtained the exact expression for the stress intensity factors (SIFs) induced by the edge
dislocation in Eq. (3.4) and the exact expression for the forces on the edge dislocation in Eq. (4.6) to Egs.
(4.82)—(4.8c). They are functions of wedge angle ¢,(¢), bi-material constants I1, A, Burgers vectors b, + ib,
and the location of the edge dislocation (74, 04). In order to have a better understanding on how these
parameters influence on the SIFs and the force on the dislocation, the following numerical examples are
given and plotted in this section. Four typical material combinations are used:

(D I = A= -1, wedge crack;

(II) I1 = —0.65, A = —0.35, Material 1 is “harder” than Material 2;
(III) IT = 2.55, A = 0.27, Material 1 is “softer”” than Material 2;
(IV) 1 = 3.33, 4 = 0.30, wedge anti-crack.

5.1. Stress intensity factor

Here we consider an edge dislocation with Burgers vector b, + ib, = be'’%, where 0, is chosen to equal to
04 for calculation. The Mode I SIF arising from such an edge dislocation as a function of distance ry4 from
the tip of the dislocation when the Material 1 is “harder” than Material 2 is plotted in Fig. 3. It is found
that when the dislocation is along the real axis, no Mode I SIF is induced. The magnitudes of Mode I SIFs
increase from zero to a maximum as 0y increases from 0° to 04 ,.x and then decrease to zero as 03 continues
to increase. The same phenomena can be observed when the Material 1 is “softer” than Material 2. But this

K, /b 171+ x))]

4 L

Fig. 3. Normalized Mode I SIF arising from an edge dislocation of Burgers vector b, + ib, = be'% at IT = —0.65, 4 = —0.35, ¢, = 90°.
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Fig. 4. The slip plane of an edge dislocation with Burgers vector b, + ib, = be!%m» corresponding to the maximum Mode I SIF.
is not true for Mode II SIF. Fig. 4 shows the slip plane of an edge dislocation inclined at Oy . corre-
sponding to the maximum magnitude of Mode I SIF as a function wedge angle ¢,. 04 max increases from a

value to a maximum and then decreases to 45° as ¢, increases from 0° to 180°. This is obvious when
Material 1 is “softer” than Material 2.

5.2. Force on the dislocation

Eq. (4.6) indicates that the radial component of the image force is independent of 64. Thus, the wedge tip
always repels the edge dislocation in the radial direction when

2/qg <2+ 1+ A, (5.1)
and attracts the edge dislocation in the radial direction when
2/qg>2+1+ A. (5.2)
folfo
0.5
X
0.5 -
1.
1.5-
#]— M=333,4=030 - IT=255A4=027
2.5 4
_3_‘ ........... 17=—0.65,A=—0.35 _______ ]7=A=_]
3.5 T T T T T T

T T
0 20 40 60 8 100 120 140 160 180
3,

Fig. 5. Normalized tangential force on the gliding edge dislocation of Burgers vector b, located at 64 = 0°.
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Fig. 6. Normalized tangential force on the gliding edge dislocation of Burgers vector b, located at 04 = 45°.

However, the tangential component of the image force is dependent of 04. Fig. 5 shows the tangential
component of the image force f; as a function of the wedge angle ¢, at 04 = 0° for the gliding edge dis-
location. Fig. 6 shows the tangential component of the image force f as a function of the wedge angle ¢, at
04 = 45° for the gliding edge dislocation. The image force in the figures are normalized by

) b?
fO _ :ul x

= ) (5.3)

It is found that when the dislocation is at the real axis, fy is always negative when the Material 2 is “harder”
than the Material 1, and is always positive when the Material 2 is “softer”. Its amplitude increases from
zero to a maximum and then decreases to zero as the wedge angle increases from 0° to 180°. But this is not
true when the dislocation is not located at the real axis.

2.5

-2.5

-7.54

6,()

Fig. 7. Normalized tangential force on the climbing edge dislocation of Burgers vector b, located at ¢, = 90°.
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In order to study the influence on f; from the dislocation location, the normalized fj is plotted as a
function of 04 in Fig. 7 for a climbing edge dislocation, when ¢, = 90°. For the climbing edge dislocation,
the amplitude of fy increases gradually from zero as 64 increases from 0° to 90° and then increases quickly
as 04 increases from 90°.

6. Concluding remarks

The problem of an edge dislocation interacting with a wedge-shaped bi-material interface is solved using
the conformal mapping method. With accordance to the physical nature of a dislocation and the continuity
condition along the interface, the Muskhelishvili complex potentials for the problem are determined. The
stress intensity factor of the wedge tip, and the force on the dislocation are calculated and discussed. The
present solutions are successfully reduced to some simple cases existing in the open literature (Dundurs and
Markenscoff, 1989; Zhang and Tong, 1995).

Appendix A

ho = qr"*l(?_imsl +2ims2 — 2ims3 — ims4 — ims5 — ims6 — ims7 + ims8 + ims9
+1ims10 + ims11 — ims12 + ims13 — ims14 + ims15), (A.1)

hyy = qr' ' (2resl + 2res2 + 2res3 — resd — resS — res6 — res7 — res8 — res9 — res10
—resll —resl2 —resl3 — resl4 — resl5), (A.2)

by = qr' ' (2ims1 + 2ims2 — 2ims3 + ims4 + imsS + ims6 + ims7 — ims8 — ims9
—ims10 — ims11 4+ ims12 — ims13 + ims14 — ims15), (A.3)

By = qri' (2res] + 2res2 + 2res3 + resd + resS + res6 + res7 + res8 + res9 + res10
+resll +resl12 4+ resl3 +resl4 + resl5), (A4)

Ny = gr’ ' (—res4 — res5 — res6 — res7 4 res8 4 res9 + res10 4 resll — res12 + resl3
—resl4 +resls), (A.5)

hyy = qr? ! (ims4 + ims5 + ims6 + ims7 + ims8 + ims9 + ims10 + ims11 + ims12

+ims13 + ims14 + ims15), (A.6)
where
_ _
res] = 1 cos 92 rdcos(0 q@Jqud)7 (A7)
724+ " — 2rtrd cos (0 — 04)
—7rsi 9 g —
ims] = = su;(? + 7 sin(0 — g0 + q04) ’ (AS)
24 + i — 2r1rd cos (0 — 040,)
q q — —
res) — II[r? cos 0 + rf cos(0 — g0 — qb4)] (A9)

12+ 130 4 277 cos g (0 + 0,)
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ims2 =

res3 =

ims3 =

resd =

ims4 =

resS =

imsSs =

res6 =

ims6 =

res7 =

ms7 = —

res8 =
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[r?sin 0 + 4 sin(0 — g0 — q04)]

12 4 10 4 21 cos (0 + 04)

2qI17§ sin (£ + 04)

[r2 + rﬁq + 2riri cos q(0 + 04

2qITrysin (% + 04)

(24 4 2 + 2r74 cos q(0 + 04

+r cos{

o |

—r1cos 30 + ri cos(gl — 30 — q04)

2
P+ —

2riri cos q(6 — 6y4)

)

r4sin 30 + rf sin(g0 — 30 — qb4)

3
r2

—2riricosq(0 — 64)

)

II[r1 cos 30 + ricos(q0 — 30 + g6,4))

2 4 130 4 2797 cos (0 + 04)

i

H[r cos 30 — ri cos(q0 — 30 + g0y4)]

724 + 13! + 2197 cos (0 + 0
d aCosq

)]2 {qurg sin <¢0 +0— 6d>

#rtsin | S0 (1= )0 = (14 0] +sin | D 1490 - (1 gy}

T {2;»%3 cos (% +0- Hd)

+(1—¢q)0—(1 —l—q)@d] + % cos [%Jr (1+¢)0—(1— q)@d] }

=217 cos 30 4 12 cos(q0 + 30 — q04) + 13! cos(q0 — 30 — q04)]

[r2 + r(zjq —2rard cosq(0 — Qd)]z

)

qrd[=2r97% sin 30 4 12 sin(q0 + 30 — q04) — 12 sin(q0 — 30 — g0y)]

[0 + ri" —2rirf cosq(0 — Hd)]z

Y

qr IT[2r47% c0s 30 + 174 cos(q0 + 30 + q04) + r3? cos(q0 — 30 + q04)]

[r2 + rﬁq + 2rird cos q(0 + Qd)]

)

qrA T[22 sin 30 + 129 sin(q0 + 30 + q04) — 73 s1n(q9 — 30+ q04)]

2q(1 + ¢)IIri sin (% + 04)

12 4 129 + 2rr% cos g (0 + 04))
d d

[r2 + rﬁq + 2riri cos q(0 + 04

+F sin

¢>o

—(q—=3)0—-(¢+ )Gd} + 7% sin [

$o

)

7 {2rqr3 sin <¢° +30 - 9d>

+B+a)0+ (- 1>9d} }

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
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2¢(1 + g)IIrsin (% + 0
ims8 — q(1 + g)IIrgsin (% + 04) {zrqr‘écos (ﬁ+30—94)
(24 4 12 +2rqrdcosq(9+9d)] 2
¢>o

bo

+ 3 cos [ —(q—3)0—(qg+ )Gd} + % cos [

4¢P ITry sin (2 + 0
res9 = —— qzq a s1nq( 2+ 0) ; {3rqr§" sin (‘bo + 360 — 0d>
(729 + 1 + 2r1rd cos g (0 + ¢)]

+(B+q)0+(q— l)ed} } (A.22)

+ 3% sin {qﬁo (g+3)0+ (¢ — I)Hd] + 1 sin <¢0 +30—q0— 04— q@d)

+ % sin (¢>0 +30 + 290 — 04 + 2q9d> } (A.23)

47 Iy sin (2 + 0
ims9 = — 4 1irq S ( 2+ d) {3rqr cos ((f)o + 30 — 0d>
[124 4 p20 + 2r4p7 cos q(0 + 04)]

+ 3177 cos {% (g+3)0+(¢g— I)Od]

¢

+ 1 cos <¢0 +30 — g0 — 04 — qu) + 1 cos <20 + 30 +2¢g0 — 04 + 2q9d> }, (A.24)

i cos O — i cos(6 — q0 + qb4)

o : ! | (A.25)
124 + 120 — 219 cos q(0 — 04)
ina10 = ' sin 0+ rgsin(0 — g0 + q0q) (A:20)
s T 2 cosq(0—0) |
resll = A[r? cos 0 + rf cos(0 — g0 — q04)] (A.27)
124+ 120 4 2079 cos g (0 + 04) |
ingpg — Al sin0+ rsin(0 — g0 — g04)] (A-28)
124 + 1yl + 29 cos (0 + 0q) |
q
rest2 = - (124 + 129 2er};dcos q(0 — 04)]° [—2r774 cos(0 + 204) + > cos(q0 + 0 + 204 — q04)
d = d o
+ 37 cos(q0 — 0 — 204 — q04)], A
. ar 79 si s
imsl2 — T 2t cosa (0 Hd)]z 2777 sin(0 + 204) — r*?sin(g0 + 0 + 204 — q04)
d d
+ rﬁq sin(gd — 0 — 204 — q04)], (A0
2 ZH 4 oq ¢ 0
rest — qzq ¥ smq( 0+ 0g) {2r"rd sin <¢0 0+ Bd)
2 + 127 4 217 cos (0 + ¢)]

+ ¥ sin ff)o +(g—10+(¢g+ )Gd] + 1% sin {‘bo (g+1)0— (g — I)Gd] }, (A.31)
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2 ZH 9 o1 b )
imsl3 = — Z Tq ST ( 2+ d) {2rqrd cos <¢0 0+ 9d>
(120 + 124 4 2719 cos ¢(0 + 04)]
+ 3 cos d)o +(@-1D0+(g+ )Hd} + 1% cos [% (g+1)0—(q— 1)94 }, (A.32)
q}”gn q 2
resl4d = — 2rird cos(¢py — 0) + r* cos(¢py — g0 — 0 — g0
(20 4+ 29 + 2r74 cos q(0 + 04)] [2rirg cos(go = 0) (90 —q 46e)
4 cos(h + 40— 0+ g0, (A.33)
. qrinl 7 2
imsl4 = — 2r1rd sin(¢y — 0) + r sin(¢py — g0 — 0 — ¢0
[124 4 2% + 2r749 cos g(6 + 04)] [2rfrgsin(do =) (%0 —4 a6)
+ 7! sin(¢y + g0 — 0 + g64)), (A.34)
4q*ITry sin (2 + 0
resls = — qu a sn;( 7+ 0a) - {3r"rd sin (4)0 0+ 9d>
[F20 4y + 2riri cos q(0 + 04)]
+ 317 sin V)O (g+1)0—(q— I)Hd} + 13! sin <¢0 0+ g0+ 04+ q0d>
+ ¥ sin (‘bo 0 —2q0 + 04 — 2q0d) } (A.35)
21724 qin (@
imsl5 = 4(]2 [ry’ sin (?0 + Hd) 3 {3rqrd cos <¢0 0+ 0d>
r2 + 1" + 2rird cos g (0 + 04
d d
+ 3% cos {% —(g+1)0—(q—- I)Hd} + 1 cos ((’bo 0+ q0+ 04 + q94>
+ 7 cos <¢° 0 —2g0+ 04 — Zqu) } (A.36)
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